4、全碳等离子激光器问世 澳大利亚莫纳什大学的科学家日前在《美国化学会•纳米》杂志上撰文称,他们研发出了全球首个完全由碳基材料制成的等离子激光器。该技术有望在提高运行速度的同时,彻底改变电子产品的外形。未来,如名片般轻薄柔软的手机甚至能被直接印制在衣服上。 等离子激光器的大名叫表面等离子体激元纳米激光器(spaser),实际上是一种高效的纳米光源。它能够通过自由电子的振动发出光束,而不像传统激光器那样需要电磁波和占用巨大的空间。传统激光器的运行需要放大光子,而等离子激光器则是通过放大表面等离子体。等离子体的运用能够使其突破传统激光器的限制,速度更快、体积更小,让超高分辨率成像和微型光学电路成为现实。有研究称,这种电路比目前最快的硅基电路还要快上百倍。 负责此项研究的莫纳什大学电子和计算机系统工程学院(ECSE)博士盖鲁帕辛哈称,与半导体等离子激光器相比,碳基等离子激光器还将提供更多优势。 盖鲁帕辛哈说:“目前传统的等离子激光器大部分由金、银等金属纳米颗粒和半导体量子点制成,而我们的设备则由石墨烯谐振器和碳纳米管增益元件组成。使用碳意味着,这种激光器的效率更高、更柔软便携,能够在高温下工作,并且更加环保。根据这些特性,未来有望制造出能够直接印制在衣服上的微型手机。目前研究人员已经在纳米天线、电导体和波导上进行了测试。” 物理学家组织网发表在4月17日的一篇文章称,这项新研究还首次证实了石墨烯和碳纳米管之间可以交互并通过光进行能量传递。这种基于光的传导,速度极快还非常节能,特别适用于制造计算机芯片。因为具有极其卓越的机械、电气和光学性能,而且还是优良的热稳定材料,能够承受高温,石墨烯和碳纳米管能够完全胜任很多高效、轻量级的应用。以该技术为基础的高速芯片可以被用来替代目前大量使用的、基于晶体管的装置,如微处理器、存储器和显示器等。新技术能够轻易突破硅基材料目前所面临的小型化和带宽瓶颈。 盖鲁帕辛哈说,除了在计算机领域的应用外,这种激光器还有望在癌症的放射疗法上获得应用,结合纳米标记技术,石墨烯和碳纳米管产生的高强度电场能将癌细胞各个击破,而不伤及健康细胞。此外,在分子检测和高灵敏度生物医学测试上该技术也能一显身手。 5、 “以退为进”提高激光器光强度 在诸如激光器等光学系统中,能量损失是影响功效的主要障碍,它以令人沮丧的方式持续不断地存在。为了克服激光器系统能量损失,操作人员经常用超量光子或光束来刺激系统以获取所需。但是,美国华盛顿大学的工程师们最近用一种新方法扭转或消除了这种损失局面,而他们的方法正是通过给激光器系统增加一些“损失”来收获能量。换一种说法就是,他们已经发明了一种“以退为进”的妙招。这一成果发表在10月17日出版的《科学》杂志上。 该成果的实验团队由华盛顿大学电子系统工程系教授杨兰(音译)博士领衔,五名队员来自美国、日本和澳大利亚。他们共进行了三个实验总结出这一新妙招。 据物理学家组织网10月17日(北京时间)报道,在第一个实验中,他们通过改变对两个微型谐振器的距离改变其匹配状态,对其中一个采用“一给命令就消失”的可控操作;在第二个实验中,通过变化损失量,他们能操控匹配状态并测算出两个谐振器之间的光强度,结果,令人吃惊地发现,当能量损失增加的时候,两个谐振器的总强度先是上升然后又有所下降,但最终重新显现出了较高的光强度;在第三个实验中,他们通过在二氧化硅中增加损失量获得了两个非线性现象。 “光强度在光学系统中是一个非常重要的参量。”杨兰说,“不同于给系统增加更多能量的标准方法,我们反其道而行之,通过调节损失量来获取更有效的能量。” 实验系统包括两个微小的直接匹配的二氧化硅谐振器,每一个都配备了不同的熔锥光纤连接器,能将光线从一个激光发射器的二极管引导到感光探测器;光纤逐渐变窄,确保光线在光纤和谐振器的正中间。杨兰说,这个构想可以在任何配对物理系统中应用。 关键器件是一种叫做“铬涂层二氧化硅纳米锥”的微型装置,能让其中一个微型谐振器产生光强损失。这个微型装置被放置在调控范围只有20纳米的极微小的光泄漏区域中。“用铬来做涂层,是因为它是一种能大量吸收1550纳米波长的材料,而且能很好地对它调控‘损失’程度。”研究人员说。另一种关键装备,是“纳米定位器”,能通过调节距离来控制配对谐振器之间的长度。 “损失获能”现象具有“例外点”的特征,这种特征对系统特性影响甚大。在近些年的物理学研究中,“例外点”贡献了一系列“反常”的表现和结果。“当我们调试系统达到‘例外点’,基于光强度的非线性过程都受到了影响。” “这项研究的美好之处在于,通常来讲,‘损失’被认为是不好的,但是我们把它变成了好的进而扭转了坏的影响,我们用激光器实现了这一点。”杨兰说。除了对激光器技术发展有所裨益,他们的发现成果在其他物理学领域,比如光子晶体表现、电浆子结构和超材料等研究领域中,也会激发针对“损失”效果的新研究计划。 6、美国探索用反物质造伽马射线激光器 传统激光器的操作光波可从红外线到X射线一网打尽,而伽马射线激光器则依靠比X射线更短的光波来运行,这就使其能产生波长仅为X射线千分之一的光波,从而能对非常微小的空间进行探测,并在医学成像领域大展拳脚。不过,长期以来,建造伽马激光器一直是个难题。现在,美国科学家让一类名为“电子偶素(positronium)”的物质—反物质混合物作为增益介质,将普通光变成了激光束。 据美国趣味科学网站5月8日报道,在最新一期的《物理评论•原子分子物理》杂志上,马里兰大学联合量子研究所的王逸新(音译)、布兰登•安德森以及查尔斯•克拉克撰文表示,他们发现,当向电子偶素提供特定能量,它将产生在其他能量下无法制造出的激光;而且,要制造出激光束,这种电子偶素必须处于玻色—爱因斯坦凝聚态下。 克拉克解释道,这种奇怪的效应与电子偶素的“性格”有关。每个电子偶素“原子”实际上是一个普通的电子和一个正电子(电子的反物质)。正电子和电子分别带正负电荷。当它们相遇时,会相互湮灭并释放出两个高能光子,这两个光子位于伽马射线范围内,反向移动。 有时,电子和正电子会围绕对方旋转,就像电子围绕着质子旋转组成原子一样。然而,正电子比质子轻,因此电子偶素并不稳定,在不到十亿分之一秒内,电子和正电子会相互碰撞并发生湮灭。 为了制造出伽马射线激光器,科学家们需要使电子偶素的温度非常低,接近绝对零度(零下273摄氏度)。这一冷却过程会让电子偶素进入波色—爱因斯坦凝聚态,这种状态下物质内的所有原子,也就是电子—正电子对,进入同样的量子状态,一举一动整齐划一。 量子状态的一个方面是自旋。电子偶素的自旋数要么为1,要么为0。一束远红外线光脉冲能让电子偶素的自旋数为0。自旋为零的电子偶素会湮灭并产生双方向相干的伽马射线束—激光束。研究人员表示,能做到这一点是因为所有电子偶素“原子”拥有同样的自旋数。如果是自旋为0和自旋为1的电子偶素随机组合,那么,光会朝各个方向散射。 研究人员也计算出,为了让一台伽马射线工作,每立方厘米大约需要1018个电子偶素原子,听起来有点多,但与空气的密度相比还是少很多,同样体积的空气大约有2.5×1019个原子。 在1994年首次提出伽马射线激光器这一概念的贝尔实验室的艾伦•米尔斯表示,研究人员可以借用数学方法,让制造这种激光器所需要的环境更加精确。
|
|
中国锻压网官方微信:扫一扫,立即关注!
关注"中国锻压网",获取独家行业新闻资讯。 添加方法1: 在“添加好友”中直接添加微信账号:chinaforge 添加方法2: 微信中扫描左侧的二维码 |